
Use of Factorial Designs to Optimize Animal Experiments
and Reduce Animal Use

Robert Shaw, Michael F. W. Festing, Ian Peers, and Larry Furlong

Abstract

Optimization of experiments, such as those used in drug
discovery, can lead to useful savings of scientific resources.
Factors such as sex, strain, and age of the animals and
protocol-specific factors such as timing and methods of ad-
ministering treatments can have an important influence on
the response of animals to experimental treatments. Facto-
rial experimental designs can be used to explore which fac-
tors and what levels of these factors will maximize the
difference between a vehicle control and a known positive
control treatment. This information can then be used to
design more efficient experiments, either by reducing the
numbers of animals used or by increasing the sensitivity so
that smaller biological effects can be detected. A factorial
experimental design approach is more effective and effi-
cient than the older approach of varying one factor at a time.
Two examples of real factorial experiments reveal how us-
ing this approach can potentially lead to a reduction in ani-
mal use and savings in financial and scientific resources
without loss of scientific validity.

Key Words: animal testing alternatives; animal use alter-
natives; case report; factorial analysis; models, animal; re-
search design; statistical methods

Introduction

There is considerable scope for reducing the number of
animals and scientific resources used in research by
designing better experiments (Festing 1994, 1995a,b;

Festing and Lovell 1996). Some experiments are performed
repeatedly with only minor variations, and even very small
improvements in the design can lead to substantial savings
of animals over a period of time. Animal experiments form
a necessary part of the late stages of the drug discovery
process—An animal model may be used to screen large
numbers of compounds with only the identity of the com-

pounds changing between experiments. A typical experi-
ment, which may involve three or four groups of
approximately eight animals treated with different candidate
compounds and a larger control group, may have the aim
of finding the compounds that have a potentially useful
effect. Batches of vaccines and other biologicals are often
tested in animals using a standard protocol, with the aim of
measuring the biological activity or toxicity of the batch.
Even in basic research, some procedures (e.g., the prepara-
tion of cDNA) use complex methods that may be used re-
peatedly even though individual experiments may vary. If
all of these experiments and associated techniques were
optimized to use the smallest number of animals consistent
with detecting a given response, there would be a substantial
reduction in animal use and important savings in scientific
resources.

One method of optimizing such experiments is to use
factorial experimental designs (FEDs1) to discover which
factors influence the outcome of the experiment and what
levels of these factors lead to an experiment with the great-
est sensitivity. The aim is usually to maximize the signal/
noise ratio so that the numbers of experimental subjects
required to detect a given treatment response (or “signal”) is
minimized by using power and sample size calculations.
The procedure involves using a vehicle control and a known
positive control treatment and attempting to maximize the
mean difference, herein designated treatment effect. In this
article, variables investigated for their influence on the treat-
ment effect are termed factors. It is also useful to know
which factors are relatively unimportant in influencing re-
sponse so that less attention is given to controlling them.

The factors to be studied can be any variables the in-
vestigator can control, including direct animal-related char-
acteristics (e.g., sex, strain, age, and dietary and health
status) and aspects of the environment (e.g., cage and group
size, bedding material, and environmental complexity).
There are also many protocol-specific factors (e.g., methods
of preparing the animal model; dose level; timing, route,
and method of administration of test compounds; and meth-
ods and timing of observations). When complex protocols
are involved in making the final observations (e.g., in the
preparation and hybridization of cDNA in microarray ex-
periments), then many factors that affect the variability ofThe following authors are in Global Enabling Science and Discovery,

Research and Development, AstraZeneca Ltd., in Macclesfield, UK: Rob-
ert Shaw, M.Sc. CStat., is Statistics Team Leader; Ian Peers, Ph.D., is
Statistics Team Leader; and Larry Furlong, Ph.D., CStat., is Director of
Statistical Science. Michael F. W. Festing, M.Sc., Ph.D., D.Sc., CStat.,
BIBiol., is a Senior Research Scientist at the MRC Toxicology Unit, Uni-
versity of Leicester, UK.

1Abbreviations used in this article: ANOVA, analysis of variance; AUC,
area under the curve; FED, factorial experimental design; OVAT, one
variable at a time.

Volume 43, Number 4 2002 223



the measurements may also need to be investigated. Some-
times animals are used as sources of tissue or cells in in
vitro experiments, and the factors that influence the out-
come of these experiments can affect the numbers of ani-
mals that are needed. Often this type of experiment will
initially involve a 2k factorial in which k factors are studied,
each set at two levels.

Factorial designs using many factors (often of the 2k

series) have been widely used in the manufacturing industry
as a means of maximizing output for a given input of re-
sources (Cox 1958; Montgomery 1997). The strategy is to
use the factorial design to identify the most important fac-
tors and levels of the factors that determine output and then
to use these factors in normal production. A similar ap-
proach has been used in optimizing output from biological
systems. For example, six factorial designs were used to
study the effects of medium composition, incubation con-
ditions, and associated microflora on the production of type
G Clostridium botulinum toxin (Calleri et al. 1992) in vitro.
A fractional factorial design was used to optimize enzyme-
linked immunosorbent assay tests (Reiken et al. 1994), and
a 24 factorial was used to optimize the conditions for freez-
ing rat liver slices (Maas et al. 2000). Similar methods have
been used to optimize the signal in DNA microarray ex-
periments (Wildsmith et al. 2001). In vivo applications have
been more rare but have been used, for example, in studying
the effect of genotype, diet, and exercise in the accumula-
tion of body fat in rats (Metzger et al. 2000); the effects of
strain and dose levels of chloramphenicol on mouse haema-
tology (Festing et al. 2001); and the effects of carcinogenic
mixtures on the development of lung tumors in mice (Nes-
now et al. 1998). However, in some of these cases, FEDs
have been used to gain an understanding of the factors in-
fluencing the observed response, rather than to optimize
future experiments.

In this article, we describe the use of FEDs to determine
which factors influence the outcome of an experiment and
the optimum levels of those factors so that future experi-
ments can be designed to have the greatest possible sensi-
tivity. This use of factorial design is an integral part of the
development of a good animal model.

Factorial Experimental Designs

The theory and practical applications of factorial designs
have been described in detail in a number of textbooks
(Clarke and Kempson 1997; Cox 1958; Mead 1988; Mont-
gomery 1997), so they will be reviewed here only briefly, in
a nonmathematical way. In factorial experiments, more than
one type of independent variable is varied at a time, but in
a structured way. The simplest factorial is a 2*2 design
(Table 1). Factor A could be a treatment such as a vehicle
control versus a test substance, and factor B could be males
versus females (or strain 1 vs. strain 2 or any other factor
thought to be relevant). In such a case, there would be four
groups: control-male, test-male, control-female, and test-

female. With a number of animals per group, there would be
four means—one for each group (e.g., a, b, c, and d), re-
spectively. The mean for all animals given vehicle control is
(a+c)/2; the mean for the treated animals is (b+d)/2; so the
estimate for the effect of drug treatment is ((a+c)-(b+d))/2.
It is important to note that all of the animals contribute
information on this difference, which is known as the main
effect of the drug. Similarly, all of the animals will have
contributed to the main effect of sex, estimated as ((a+b)-
(c+d))/2. This multiple use of data is a key benefit of using
factorial designs to maximize information on limited num-
bers of animals.

If the response of the two sexes to the drug treatment is
different, then there is said to be an interaction between
factors A and B, estimated as ((a-c)-(b-d))/2. These inter-
action effects (commonly seen in biomedical sciences as
synergism, enhancement, or potentiation) between the treat-
ments (factor A in this case) and the other factors tested in
the experiment are of particular interest because the aim is
to maximize the treatment effect.

This principle generalizes to any number of factors and
levels of each factor. For example, an experiment using rats
may involve four dose levels of a drug X (one of which may
be a zero dose level vehicle control) and both males and
females. It would be a 4 × 2 factorial experiment, and the
main aim might be to determine whether the dose-response
relation is the same in both sexes. When the aim is to screen
the possible impact of many (k) different factors on re-
sponse or output, it is common to use a 2k factorial design
with each factor at two levels (e.g., male/female or treat-
ment/control). Such designs can be used as a rapid screen to
identify factors that are of most importance in determining
response, and they can be designed to be economical with
the use of animals.

In this discussion, we assume that the response is a
quantitative rather than a categorical variable so that the
experiment can be analyzed using analysis of variance
(ANOVA1). (A quantitative variable is one that can be mea-
sured on a continuous scale [e.g., body weight], whereas a
categorical variable is one that takes a limited number of
discrete values [e.g., response/no response or large/medium/
small].) The two assumptions of normality of the residuals

Table 1 The simplest possible factorial design:
factor A is a control versus a treatment, and
factor B is the sex of the animals

Factor A

Factor B

Male Female

Vehicle control a c
Treated b d

aIt is assumed that there are n animals in each group.
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(i.e., deviation of each observation from its group mean) and
homogeneity of variances are normally examined as part of
the statistical analysis.

All dedicated statistical packages should support the
multiway ANOVA used to analyze factorial designs, al-
though elementary packages may not allow unequal num-
bers in each group. Some packages also provide ready-
randomized plans and analyses for a range of different
factorial designs, with up to 15 factors, as well as Plackett-
Burman designs (not considered here), with up to 47 factors.
Other, more specialized experimental design software is
available. Note that these designs are widely used in the
manufacturing industry, where the factors are often settings
on a machine. Observations that would normally be associ-
ated with the treatments of an individual animal here are
frequently referred to as a “run” in industrial research.

Comparison with the
One-Variable-at-a-Time (OVAT1) Approach

In contrast to FEDs, the most common historical approach
is to vary each factor of interest in turn, keeping all other
factors, which may influence the outcome, at a fixed level.
This approach, commonly known as OVAT, has certain
disadvantages, which include the following:

1. Each group of animals will contribute to understanding
the effect of only a single factor, in contrast to FED, in
which each animal will contribute to understanding the
effect of all of the factors under exploration.

2. The independent investigation of each factor inherent in
the OVAT approach overlooks the possible ways in
which the effect of one factor can depend on the level of
another (i.e., two or more factors may interact with each
other).

3. Implementation of FED designs contributes to more ef-
ficient use of resources. For example, detailed consid-
eration of all potential factors of interest at the study
outset avoids incremental changes to multiple studies
over time.

Thus, according to Cox (1958), “ . . . factorial experiments
have, compared with the one factor at a time approach, the
advantages of giving greater precision for estimating overall
factor effects, of enabling interactions between different
factors to be explored, and of allowing the range of validity
of the conclusions to be extended by the insertion of addi-
tional factors.” These points imply that in comparison to
OVAT, a FED approach will lead to better information with
the use of fewer animals.

Full Factorial and Fractional
Factorial Designs

The number of factors that can be studied will, in practice,
range from two to approximately 15 or more, although in

whole animal experiments it is unlikely that more than
about 10 factors will be tested in a single experiment. When
a small number of factors (perhaps up to 4) are considered
at two levels each, full factorial designs can be applied. In
these designs, a group of animals for every combination of
each factor is included, as given in the simple examples
above. With two factors, there are four animal groups to be
considered (assuming 2 levels/factor); with four factors,
there are 16; and with seven factors, there are 128 groups.
For a larger number of factors, the total number of possible
combinations becomes very large. In these situations, frac-
tional factorial designs can be used.

A fractional factorial design provides a balanced subset
of these groups while maximizing information on factors
explored in the study. An example is a design with four
factors, each at two levels (called a 24 design). There are 16
treatment combinations in all; however, it is possible to
carry out a half fraction of the full design, with only eight
treatment combinations (with appropriate replication), and
still be able to estimate the effect of each factor and the
interaction between any pair of factors. A degree of repli-
cation for each group is typically applied for two reasons:
(1) to avoid losing information on an individual treatment
combination through death/humane withdrawal of an ani-
mal; and (2) in many cases, it may be impractical due to
protocol logistics and housing to include too many different
groups. It should be noted that with fractional designs, some
of the interactions may no longer be cleanly estimated and
may be difficult to interpret. We recommend obtaining ex-
pert statistical advice when considering such a design.

A brief example of a fractional design layout is provided
in Table 2. Eight factors were identified from a brainstorm-
ing session to be explored within an experimental design. A
full factorial design would have consisted of 28 � 256
groups. We chose a fractional factorial, which comprises 16
groups representing only 1/16 of the full design. This type
of layout is obtainable from many statistical software pack-
ages. The design is structured to maximize information on
the main effects and low-order interactions of the factors
and treatment while sacrificing information on the high-
order interactions, which are presumed to be negligible. In
summary, fractional factorial designs provide a very pow-
erful approach for reducing the total number of animal
groups.

Interactions Involving Treatment and
Other Factors

As noted above, one criterion often used for optimizing in
vivo screens is to maximize the treatment difference. Any
interaction between a factor in the experiment and the treat-
ment may imply scope for improving the sensitivity of the
experiment (the signal/noise ratio). For example, in Table 3,
the coded white blood cell counts of two strains of mice
administered vehicle or chloramphenicol (2500 mg/kg) by
gavage are shown (Festing et al. 2001). Data were trans-
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formed to log10(X+1), where X is the individual observation
to normalize the residuals (deviations of each observation
from its group mean), and were analyzed by ANOVA. Re-
sidual plots were used to ensure that the assumptions of
normality of residuals and homogeneity of variances were
satisfied (not shown, but see Example 2 and most modern
statistics textbooks). A highly significant interaction (F1,28

� 8.46, p � 0.007) between the chloramphenicol treatment
and the mouse strain reveals that the two strains differed in
sensitivity. The least squares means (which account for un-
equal numbers in each group) shown in Table 3 are given in
standard deviation units after the division of each mean by

the pooled standard deviation. The use of standard deviation
units here makes it easier to estimate sample sizes (see
below) and to compare different experiments.

The response was substantially greater in strain CBA
than in CD-1, so that if the aim had been to screen com-
pounds to see whether they reduce white blood cell counts
in the same way as chloramphenicol (an unwanted toxic
side effect in this case), then much smaller sample sizes
would have been needed to detect a specified effect using
sensitive CBA rather than insensitive CD-1 mice. Indeed,
the response to chloramphenicol in the CD-1 mice is so
small (and not even statistically significant) that it is doubt-
ful whether this strain could even be used in such a screen.
Although the use of CBA mice could result in smaller
sample sizes, an alternative would be to use the same num-
ber of animals but to have a more powerful experiment
capable of detecting a smaller biological response.

Effect Size and Sample size

Two main strategies for determining sample size, the re-
source equation method and the power analysis method,
have been described (Festing et al. 2002). The resource
equation method depends on the law of diminishing returns
and is based on the suggestion of Mead (1988), that there
should be 10 to 20 degrees of freedom for the error term in
the ANOVA. Although this guide is useful in some circum-
stances, it does not account for the effect size of scientific
interest or the variability of the experimental material as
assessed by the standard deviation of the character(s) being
measured. The method is also difficult to apply to some
factorial designs because of the desirability of having equal
or nearly equal numbers in each group so the total number

Table 3 White blood cell response (in standard
deviation units) of two strains of mice given
chloramphenicol at 2500 mg/kga

Strain Vehicle Chloramphenicol Difference

CD-1 4.67 4.23 0.44
CBA 4.03 1.51 2.52

aData abstracted from the larger study of Festing MFW, Diamanti P,
Turton JA. 2001. Strain differences in haematological response to
chloramphenicol succinate in mice: Implications for toxicological re-
search. Food Chem Toxicol 39:375-383.
Effect sizes as described in the Table 1 text of Festing et al. 2001 as
follows:

Main effect of treatment: {(4.67 + 4.03) − (4.23 + 1.51)}/2 = 1.48
Main effect of strain: {(4.67 + 4.23) − (4.03 + 1.51)}/2 = 1.68
Interaction effect: {(4.67 − 4.23) − (4.03 − 1.51)}/2 = (0.44 − 2.52)/2

= −1.04
Note that the interaction effect is the averaged difference in the two
responses to chloramphenicol across the two strains, [(0.44 − 2.52)/
2] = −1.04.

Table 2 Example of a fractionated design

Compound
Dose
(mg/kg) Sex Age

Nutritional
state

Time after
dosing (hr)

Glucose load
(g/kg)

Time after glucose
load (min)

A 10 M 10 Fed 4 2 5
B 10 M 10 Fed 6 4 10
A 20 M 10 Unfed 4 4 10
B 20 M 10 Unfed 6 2 5
A 10 F 10 Unfed 6 4 5
B 10 F 10 Unfed 4 2 10
A 20 F 10 Fed 6 2 10
B 20 F 10 Fed 4 4 5
A 10 M 20 Unfed 6 2 10
B 10 M 20 Unfed 4 4 5
A 20 M 20 Fed 6 4 5
B 20 M 20 Fed 4 2 10
A 10 F 20 Fed 4 4 10
B 10 F 20 Fed 6 2 5
A 20 F 20 Unfed 4 2 5
B 20 F 20 Unfed 6 4 10
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used is some multiple of the number of treatment combina-
tions. Therefore, given that some estimate of the standard
deviation is nearly always available, a power analysis
should always be used in preference to the resource equa-
tion method for the type of FEDs described here.

Power analysis calculations require estimates of the
standard deviation among experimental units, which must
come from previous experiments or the literature, the effect
size of biological interest, the required power, the signifi-
cance level, and the alternative hypothesis (whether a one-
or two-tailed test is appropriate). The effect size is the mag-
nitude of the difference between treatment and control
means, which the experiment is to be designed to detect.
The larger the effect size, the greater the statistical power
and the likelihood that statistical significance will be at-
tained, other things being equal. A standardized effect size
index, d, which is the effect divided by the pooled standard
deviation, can be used to compare studies. This is a pure
unitless number, and Cohen (1988) has suggested using it to
determine sample size by specifying whether the research
worker is interested in a “small,” “medium,” or “large”
effect. In research in psychology, Cohen suggests that in the
two-sample case, a small effect would be one where d �
0.2, a medium one would have d � 0.5, and a large one
d � 0.8. Effect sizes of interest vary between disciplines.
For example, effects classified as small can range from 0.13
in education to 0.55 in sociology. In animal research, effect
sizes are likely to be large relative to other types of research
because large doses of active compounds are often given to
ensure that a response is detectable. Hwever, to date, no one
has suggested small, medium, or large values for d in animal
experiments.

The power of an experiment is the probability (some-
times given as a percentage) of detecting the specified effect
size and calling it significant at the specified level. Typi-
cally, a power of 80 to 95% is specified, although in screen-
ing some vaccines, a power as high as 99% is specified
because of the serious consequences that would follow if the
experiment failed to detect a toxic batch of vaccine. The
significance level, which is the probability that an effect will
appear to be caused by the treatment although in reality it is
due to chance, is usually set at 5%.

As an example, using Table 3, chloramphenicol given at
a dose of 2500 mg/kg caused a 0.44 standard deviation
change in the mean of CD-1 mice and a 2.52 standard
deviation change in the mean of CBA mice. As explained in
the table footnote, the interaction effect is −1.04 standard
deviations. Suppose the aim is to set up a program to screen
compounds for their effects on white blood cell counts using
chloramphenicol at this dose as the positive control. A
power analysis can be used to estimate the sample size that
would be needed to detect changes of these magnitudes
assuming, for example, a 5% significance level and a 90%
power. Using nQuery Advisor (Statistical Solutions, Cork,
Ireland), such experiments would require 90 mice per group
using CD-1 mice, but only four mice per group using CBA
mice. These differences are extreme because the CD-1 mice

were very insensitive and CBA are very sensitive to the
treatment.

A clear distinction must be made between the sample
size requirements for the development of an in vivo assay
using FEDs (a concern of this article) and the requirements
for performing the assay itself. Traditional power calcula-
tions can be applied to meet the latter case, based on infor-
mation gathered from the FED. The number of animals used
in developing new screens or models should reflect the im-
portance of this stage; indeed, using suboptimal conditions
in model development will increase the number of animals
required to achieve sufficient power in the routine screen,
which may extend over many months so that the numbers of
animals used in the screen can accumulate significantly. It is
the total number of animals required to develop new models
or assay conditions using a FED that is critical, rather than
the number of groups or numbers within a group, because
the results of all animals are used to assess all factors.

Sample Size Estimation in Practice

If the aim is to optimize an existing experiment, then the
investigator should have a good idea of the likely magnitude
of the treatment response as well as an estimate of the
standard deviation of the character being measured. Thus,
the actual response in standard deviation units observed in
previous experiments can be calculated. The FED planned
to optimize the experiment should probably be designed to
detect an effect somewhat less than what is actually ob-
served from the positive control. Because half of the ani-
mals in this type of FED will receive the vehicle and the
other half the positive control, a first approximation of
sample size can be obtained by assuming that the two
groups are to be compared using a two-sample t-test. This
approach will underestimate the required sample size to
some extent because the standard deviation will be based on
fewer observations in the FED than in a two-sample design;
however, if the experiment is not too small, the underesti-
mation should not be too serious. In Table 4, the total num-

Table 4 Standardized effect size d and sample
size for a two-sample t-test assuming a two-tailed
test, a significance level of 0.05, and a power
of 95%

Standardized
effect size No./experimenta

0.6 148
0.8 84
1.0 54
1.2 40

aNote that this is the total number per experiment rather than the
number per group.

Volume 43, Number 4 2002 227



bers (not numbers per group) required in a two-sample
t-test, assuming a two-sided test and a 95% power, are
shown. In this case, it is possible to obtain a rough estimate
of the total numbers of animals to be used in the FED, split
among the various treatment groups.

Next, the total number of treatment combinations should
be worked out according to the number of factors, the treat-
ment to be explored, and the number of levels of each factor
(see Successful Implementation of a FED below). Example
1 below is a 3*2*2 design with 12 treatment and factor
combinations, and Example 2 is a 2*2*2*2*2 factorial with
32 combinations.

The next step is to propose an appropriate level of rep-
lication (n) within each group. It is generally most appro-
priate to balance the designs by having equal numbers in
each group. Thus, the total number of animals used will
usually be some multiple of the number of treatment com-
binations. For Example 1, three animals per group would
give a total of 36 animals (as actually used) and, according
to Table 4, would probably be capable of detecting only
large effect sizes of about d � 1.2 standard deviations. For
Example 2, two animals per group (as actually used) would
be able to detect only an effect of just over d � 0.8. In fact,
the average detected effect was d � 0.88.

When the FED has been carried out, the combination of
factors that provides the best response in the positive control
will be known. At that time, there should be a good estimate
of the standard deviation, and the information can then be
used to design an optimum screening experiment close to
the correct size using the power analysis method.

Successful Implementation of a FED

Setting up and performing the FED should involve a col-
laboration between scientist and statistician. We propose
following the sequence of steps described below as prepa-
ratory work, carrying out the experiments, and follow up.

Preparatory Work

1. Define the objectives of the study and resource constraints.
2. Chart the experimental procedure in a flow chart.
3. Brainstorm all possible factors that could cause varia-

tion in the response(s) of interest.
4. Prioritize the factors so that at least the most important

ones are included in the design of the first FED. Other
factors might be considered in later experiments.

5. Consider the number of factors and appropriate dose
levels to derive the number of treatment combinations.
Multiply by the number of animals per group to obtain
the total number of animals to be used, as outlined
above, and verify that the number of animals appears
reasonable according to Table 4. Order the animals in a
timely manner. Animals may need a couple of weeks to
adjust to a new environment.

6. Consider whether to use a completely randomized or a
randomized block design. Blocking breaks the experi-
ment up into a number of “mini-experiments” within
which the material (animals) can be as homogeneous as
possible, thereby increasing precision (see Cox 1958,
Montgomery 1997, or any standard statistical text for
details).

7. Plan how the animals are to be housed and what ran-
domization procedure is to be used.

8. Consider the practicality of the design. Can any steps be
taken to aid logistics and to minimize the risk of poten-
tial errors?

Note that in some cases, a few follow-up experiments may
be worthwhile in establishing full confidence in the condi-
tions derived, or to explore in more detail outside the ranges
initially addressed.

Performing the Experiments

1. Ensure that any observations and deviations from the
protocol of the design are recorded with the results be-
cause they may influence the statistical analysis.

2. Record all relevant data from experiments, even if it
is considered unlikely that they will influence the
conclusions.

Followup

1. Analyze the data. Visualize (plot) the data for individual
animals before moving on to analysis of mean re-
sponses. Graphical study of residuals plots (Example 2)
can also detect outliers and ensure that the assumptions
underlying the ANOVA are met.

2. Pay attention to the robustness of the experiment (i.e.,
the extent to which the results are influenced by minor
variation in conditions that cannot be adequately con-
trolled). This aspect is particularly important in cell-
based and enzyme assays. A randomized block design
with replication over time, and/or in different laborato-
ries or by different staff, will often give a good indica-
tion of the robustness of the experiment by the extent to
which the results are repeatable under these conditions.

Examples of Factorial Designs

Example 1: Full Factorial Design

The objective of this study was to identify conditions with
a new animal model to maximize the sensitivity for testing
compounds in a screen. The following factors were in-
cluded: time of fasting (0/2/4 hr), age of rat (young / old),
and treatment (control/treated). All combinations of these
factor settings were included in 12 groups of three rats,
according to the design layout given in Table 5.
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Response measurements were taken on each animal
over several time periods, and these data were summarized
by evaluating area under the curve (AUC1), a useful sum-
mary measure of response. The data were analyzed by
ANOVA, which led to the conclusion that the age of animal
had no effect on the AUC results. However, there was a
significant treatment by fasting time interaction. In Table 6,
the average AUCs for the different treatment and fasting
time combinations are shown. Note that all 36 animals pro-
vide information on these relations, and the 4-hr fasted time
point provides a better response than either the nonfasted or
2-hr fasted animals.

The main outcomes of applying FED in this example
were as follows:

• The design contributed to the development of a better
animal model for screening compounds in that a switch

was made from using a nonfasted animal to using a 2-hr
fasted animal.

• The improved model opened up a window (treatment
control difference) for testing compounds nearly twice
as large as previously seen.

• The wider window enabled follow-on dose response
studies to be completed at much lower doses than pre-
viously possible, allowing the screen to pick out more
candidate drugs than before and possibly contributing to
the welfare of the animals.

• The wider window means that the sample size could be
reduced without compromising the sensitivity of the
screen and/or that smaller responses could be detected.

Example 2: Full 25 Factorial Design Used to
Help Develop a Model for Testing Agents
That May Reduce Cancer

Multiple lung tumors can be induced in some strains of mice
exposed to a carcinogen such as urethane. These cases could
be used as a model to test compounds that might prevent or
reduce the incidence of cancer. For example, diallyl sul-
phide, one of the active ingredients of garlic, may help to
protect against cancer (Hong et al. 1992). The proposed
protocol would be to administer the test compound to mice
for a period of time, then expose them to a carcinogen, and
after an appropriate period (usually about 5 mo), sacrifice
the mice and count the number of tumors on the surface of
the lungs. This protocol is quantitative, with the number of
small (2- to 3-mm diameter) tumors ranging up to about 30
and exceptionally as high as 100 or more. Because the tu-
mors are very small and the animals are sacrificed well
before they become sick, the endpoint is humane.

To develop the model, a FED was used to test the fol-
lowing: (1) strain, using two strains of mice known to be
susceptible (A/J and NIH); (2) sex (males and females); (3)
diet (RM1 expanded diet or RM3 pelleted diet); (4) carcino-
gen (urethane or 3-methylcholanthrene); and (5) treatment
(diallyl sulphide, compared with vehicle, administered by
gavage over a period of 3 days before administration and 2
days after administration of the carcinogen, which was
given by intraperitoneal injection). Thus, this was a 25 fac-
torial design with 32 combinations of factors and treatments
and two mice in each group, with the aim of maximizing the
observed treatment effect. Full details of dose levels and so
forth are not discussed in this article because the aim is to
demonstrate the principle of the use of such designs.

The data were transformed by taking the square root of
the (tumor count plus one) to normalize the residuals and
equalize the variation in each group (Festing et al. 1994). A
normal probability plot of the residuals (deviations from
group means) is shown in Figure 1. Although the bulk of the
observations form a good straight line, implying a normal
distribution, there are six points that could be considered to
be outliers. These points represent three pairs of observa-
tions in which the two mice in the group differed more than

Table 5 Example layout of a 3*2*2 factorial
design used to optimize a protocol for screening
in drug development (for details see text)

Group
Event time
(hr) Age Treatment

1 0 (−) Old (+) Treat (+)
2 0 (−) Old (+) Control (−)
3 0 (−) Young (−) Treat (+)
4 0 (−) Young (−) Control (−)
5 2 (0) Old (+) Treat (+)
6 2 (0) Old (+) Control (−)
7 2 (0) Young (−) Treat (+)
8 2 (0) Young (−) Control (−)
9 4 (+) Old (+) Treat (+)

10 4 (+) Old (+) Control (−)
11 4 (+) Young (−) Treat (+)
12 4 (+) Young (−) Control (−)

Table 6 Summary of treatment*time interaction in
Example 1 (data expressed in standard
deviation units)

Combi-
nation

Event
time
(hr) Treatment

Average
area
under
the curve Difference

1 0 Treat 5.09
2 0 Control 7.64 2.55
3 2 Treat 5.21
4 2 Control 9.91 4.70
5 4 Treat 5.85
6 4 Control 10.79 4.94

Volume 43, Number 4 2002 229



would be expected by chance. For example, two NIH mice
had 0 and 29 tumors, two A/J mice had 0 and 65 tumors, and
two A/J mice had 40 and 103 tumors, respectively. The
reason for these differences is unknown. There was no evi-
dence of a mistake in recording the numbers. It is possible
that the two mice without tumors were injected incorrectly,
but this possibility is pure speculation, and no adjustment
has been made in the subsequent analysis. The plots of
model group means versus residuals (Figure 2) provide no
evidence of a pattern that would suggest heterogeneity of
variance. Thus, the assumptions necessary for the analysis
of variance are adequately met.

The ANOVA revealed that there were no significant
three-, four-, or five-way interactions (p > 0.05 in all cases).
Statistically significant strain*carcinogen (F1,32 � 26.5,
p < 0.0005) and treatment*carcinogen (F1,32 � 5.0,
p � 0.032) interactions were found. The main effects of
treatment, strain, and carcinogen were also statistically sig-
nificant (p < 0.05).

The treatment*carcinogen interaction is of interest in
optimizing the model. The means, in standard deviation
units, are given in Table 7. Diallyl sulphide, the positive
control, was only marginally effective in reducing the num-
ber of tumors induced by urethane, resulting in a mean
reduction of only 0.19 standard deviations, whereas the re-
sult was a reduction of 1.56 standard deviations against
tumors induced by 3-methlycholanthrene. In effect, the
screen would be effective in detecting compounds that give
protection from tumors caused by compounds that act only
in a similar way to 3-methlycholanthrene. The highly sig-

nificant strain*carcinogen interaction was due to strain A/J
mice developing more tumors with 3-methylcholanthrene
than with urethane, whereas the opposite was true with
strain NIH (data not shown). This difference might be worth
taking into account when choosing a strain for future
screening even though there is no overall evidence that one
strain would be better than another.

These results clearly raise several questions about this
model, which are not discussed in this article. However, if
the aim is to detect compounds that protect against cancer
induced by a range of carcinogens, then the protocols would
require further development. Thought should be given to the
dose levels and timing of administration of the treatments
and the carcinogens. However, less attention to the diet or
sex of mouse is needed because there was no evidence that
these factors played any part in determining the response to
diallyl sulphide. Thus, a factorial study of this sort can be

Table 7 Lung tumor response to diallyl sulphide
after treatment with two carcinogens (in standard
deviation units)

Carcinogen

Treatment

DifferenceVehicle Diallyl sulphide

Urethane 3.18 3.37 0.19
3-MC 1.50 3.06 1.56

Figure 2 Plot produced by a standard statistical package of re-
siduals (deviation from group means) versus model group means
(see test Example 2). Absence of any trend or pattern implies that
the variation is approximately the same in each group. Note that in
this case, there is a symmetrical pattern about the zero line result-
ing from two animals in each group.

Figure 1 Normal probability plot of the residuals (deviations from
model group means) versus the “normal score” for Example 2.
This plot is provided by a standard statistical package as a check
of whether one of the assumptions presumed in analysis of vari-
ance is met. If these deviations are normally distributed, this line
should be straight, which is the case for most of the middle points
although there are six points that are outliers due to large differ-
ences between three sets of animals receiving the same treatments.
See text for more details.
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used to identify factors that can maximize response in future
studies and those that are likely to have little or no effect. In
this case, the aim of screening compounds that might reduce
tumor incidence with a mode of action similar to diallyl
sulphide can probably be done only by using 3-methlychol-
anthrene as the carcinogen challenge.

Discussion

The objective of this article is to describe the use of FEDs
in the development and optimization of animal experiments
by exploring the effects of, for example, age, strain, sex, and
protocol-specific factors on the sensitivity of the experi-
ment, using the treatment response as an index of sensitiv-
ity. Clearly the positive control should have a mode of
action that is similar to the presumed mode of action of the
chemicals being screened. After finding which factors in-
fluence the treatment difference and the combination of
these factors and levels of factors that leads to the largest
treatment effect, subsequent experiments can be designed
with a high level of sensitivity. In other words, sample size
can be reduced for equivalent quality of information. With
experiments that are repeated frequently with only minor
changes (e.g., screening experiments in drug development),
the result will be a significant cumulative savings in animals
and scientific resources over the life of the screen. Further-
more, as demonstrated above, the optimization process is
more efficient compared with traditional approaches such as
the OVAT approach.

Two additional points that must be taken into account in
designing future experiments are not easily addressed using
FEDs alone. The first point is that the experimental protocol
must be robust so that the responses are not seriously altered
by minor changes in uncontrollable conditions. FEDs can be
used to show which controllable factors are important, but
they cannot be used easily to investigate the many uncon-
trollable factors that can affect the results. These factors can
be explored, however, by designing the FEDs as random-
ized block designs when possible. Blocking splits the ex-
periment up into a number of mini-experiments that are
repeated over a period of time, in different laboratories, or
with different personnel. If the individual blocks give es-
sentially the same results, then the experiment should be
robust.

The second point is that the within-group variability can
have a large impact on sample size estimates, but this effect
cannot be studied easily using FEDs because group sizes are
normally small, which is why they are so efficient. Outbred
stocks of mice and rats are usually phenotypically more
variable than inbred strains due to the genetic variation
within the colony, and this variability may mean that more
outbred than inbred stocks may be needed (Festing 1976;
Festing et al. 2001; Ghirardi et al. 1995). Similarly, sub-
clinical infection can also increase interindividual variabil-
ity (Gartner 1990). However, large sample sizes are needed
to detect statistically significant differences in variability

between groups of animals. It is probably best to use only
high-quality specific pathogen-free animals of an isogenic
strain when they are available, although an outbred stock
that is equally sensitive or more sensitive than an inbred
strain could be justified.

In conclusion, FEDs can, and should, be used to opti-
mize animal experiments to derive robust conditions effi-
ciently. Particular benefit is gained when these conditions
are applied repeatedly with only minor changes in treat-
ments, such as in drug screening and development.
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